ANTIBIOTIC ACTIVITY OF PURE PENICILLIN N AND ISOPENICILLIN N

J. L. OTT and N. NEUSS

The Lilly Research Laboratories Eli Lilly and Company Indianapolis, Indiana 46285, U.S.A.

(Received for publication January 11, 1982)

The antibacterial spectrum of crude penicillin N solutions has been used earlier^{1,2)} to determine chirality of the α -aminoadipyl side chain in an unknown sample of this antibiotic or its enantiomer, isopenicillin N. Ready availability of pure penicillin N and isopenicillin N³⁾ prompted us to compare their antibacterial activity against a few selected organisms.

Overnight broth cultures of *Staphylococcus* aureus, strain ATCC 25923; *Micrococcus luteus*, strain ATCC 9341 (formerly *Sarcina lutea*); *Salmonella typhimurium*, strain ATCC 13311, and a *Pseudomonas* sp. (supersensitive), strain X621 were adjusted to a 0.5 McFarland standard in broth. Penassay seed agar at pH 7.2 was inoculated at an 1 percent concentration with the *Staph., Salmonella*, and *Pseudomonas* cultures. *Micrococcus luteus* plates were prepared in Difco penassay base agar adjusted to pH 6.0.

Freshly prepared pure penicillin N and isopenicillin N were dissolved in water and diluted to contain 1000, 500, 200, 100, 50, 20, 10 and 5 μ g/ml. Disks (6.35 mm) were placed on the

seeded plates. When 20 μ l of the above antibiotic solutions were added to the disk with an Eppendorf pipette, the concentrations on the disks were 20, 10, 4, 2, 1, 0.4, 0.2, and 0.1 μ g. Assays were done in triplicate. After overnight incubation at 37°C, zone size was determined with a Fisher-Lilly zone reader. An average of the 3 zone sizes for each dilution was determined.

Results of the experiment are presented in the Table 1. Detectable zones with 0.1 μ g of penicillin N were demonstrated against the Salmonella and Micrococcus strains. Twice as much isopenicillin N was needed to give a detectable zone against the Micrococcus and 40 times as much against the Salmonella. Isopenicillin N was less active against all 4 organisms than penicillin N. There was a moderate difference in activity between the two enantiomers against the Staph., Micrococcus and Pseudomonas sp. but penicillin N was considerably more active than isopenicillin N against Salmonella typhimurium. These data differ somewhat from results reported earlier²⁾ where only a crude sample of penicillin N was used as a standard.

Acknowledgements

We greatly acknowledge S. A. STROY and H. M. SULLIVAN for antibiotic assays. Freshly prepared samples of penicillin N and isopenicillin N were provided by L. L. HUCKSTEP.

References

1) O'SULLIVAN, J.; R. C. BLEANEY, J. A. HUD-DLESTON & E. P. ABRAHAM: Incorporation of

Concentration in µg per disk	Salmonella*		Pseudomonas*		Staph. aureus*		Micrococcus luteus*	
	Pen N	Isopen N	Pen N	Isopen N	Pen N	Isopen N	Pen N	Isopen N
20	39.3	19.7	23.3	21.5	25.9	23.9	32.3	31.3
10	37.6	16.1	19.0	16.2	21.8	19.8	30.7	29.3
4	33.0	9.6	9.3	7.7	17.4	15.4	28.3	26.4
2	30.3	0	0	0	14.3	13.0	25.3	22.5
1	27.7	0	0	0	12.3	9.6	21.3	19.0
0.4	20.5	0	0	0	9.1	0	17.1	14.8
0.2	13.7	0	0	0	0	0	13.9	8.8
0.1	9.5	0	0	0	0	0	9.0	0

Table 1. Comparison of antibacterial activity of penicillin N and isopenicillin N.

* Strains described in Text. Pen N: Penicillin N, Isopen N: Isopenicillin N. Zone size in mm.

⁸H from δ-(L-α-amino[4,5-³H]adipyl)-L-cysteinyl-D-[4,4-³H]valine into isopenicillin N. Biochem. J. 184: 421 ~ 426, 1979

- KONOMI, T.; S. HERCHEN, J. E. BALDWIN, M. YOSHIDA, N. A. HUNT & A. L. DEMAIN: Cellfree conversion of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine into an antibiotic with the properties of isopenicillin N in *Cephalosporium acremonium*. Biochem. J. 184: 427~430, 1979
- NEUSS, N.; D. M. BERRY, J. KUPKA, A. L. DEMAIN, S. W. QUEENER, D. C. DUCKWORTH & L. L. HUCKSTEP: High performance liquid chromatography (HPLC) of natural products. V. The use of HPLC in the cell-free biosynthetic conversion of α-aminoadipyl-cysteinyl-valine (LLD) into isopenicillin N. J. Antibiotics 35: 573 ~ 577, 1982